메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
이광국 (한양대학교) 송수한 (삼성전자) 가기환 (한양대학교) 윤자영 (한양대학교) 김재준 (한양대학교) 김회율 (한양대학교)
저널정보
한국멀티미디어학회 멀티미디어학회논문지 멀티미디어학회논문지 제11권 제5호
발행연도
2008.5
수록면
597 - 609 (13page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
기존의 배경 모델링 방법은 배경 모델의 반복적 갱신(recursive update)으로 인해 배경보다 객체가 더 자주 동장하는 혼잡한 환경에서는 정확한 배경 모델링을 생성하기 어려운 문제를 지니고 있다. 본 논문은 이러한 기존 방법의 문제를 해결하기 위해 기존의 혼합 Gaussian 모델을 기반으로 하는 적응적 배경 모델링 방법을 제안한다. 제안한 방법은 영상 내 전경 영역의 비율에 따라 배경 모델의 학습 비율을 적응 적으로 조절한다. 따라서, 혼잡 상황애서는 배경 모델의 갱신을 억제하여 배경 모델을 잘 유지시키는 것이 가능하다. 실험을 통해 제안한 방법이 일반적인 상황의 영상에서는 기존 방법과 유사한 정확도를 보이지만 혼잡한 상황에서는 기존 방법과 비교하여 배경 제거를 효과적으로 수행하는 것을 확인하였으며 또 정확도 측정 결과 혼잡한 상황의 영상에서 기폰 방법과 비교하여 F 값이 5-10% 가량 향상함을 확인 하였다.

목차

요약
ABSTRACT
1. 서론
2. 기존의 혼합 Gaussian 모델 방법
3. 제안된 방법
4. 실험 및 결과
5. 결론
참고문헌

참고문헌 (14)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2012-004-004432461