메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
김용선 (서울시립대학교) 권원태 (서울시립대학교)
저널정보
한국생산제조학회 한국생산제조학회지 한국생산제조시스템학회지 Vol.20 No.3
발행연도
2011.6
수록면
232 - 238 (7page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

이 논문의 연구 히스토리 (2)

초록· 키워드

오류제보하기
In the present study, Taguchi method is used to determine the rough region first, followed by RSM technique to determine the exact optimum value during milling on a machining center. A region reducing algorithm is applied to narrow down the region of the Taguchi method for RSM. The result from the Taguchi method is fed to train the artificial neural network (ANN), whose optimum value is used to drive the region reducing algorithm. The proposed algorithm is tested under different cutting condition and results show that the introduced algorithm works well during milling process. It is also shown that theoretically obtained optimal cutting condition is very close to experimentally obtained result.

목차

Abstract
1. 서론
2. 실험 방법
3. 실험결과 및 고찰
4. 결론
후기
참고문헌

참고문헌 (9)

참고문헌 신청

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2013-552-000512707