메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술대회자료
저자정보
김민철 (인하대학교) 최원익 (인하대학교)
저널정보
Korean Institute of Information Scientists and Engineers 한국정보과학회 학술발표논문집 한국정보과학회 2011한국컴퓨터종합학술대회 논문집 제38권 제1호(C)
발행연도
2011.6
수록면
37 - 40 (4page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

이 논문의 연구 히스토리 (3)

초록· 키워드

오류제보하기
계층적 색인 구조는 대용량의 다차원 데이터에 대한 범위질의를 가장 효율적으로 처리하는 색인 구조이다. 계층적 색인 구조에서 범위질의의 속도를 향상시키기 위해서 색인 구조의 구성 시 발생하는 인접노드간의 겹치는 영역을 줄이는 기법들과 다량의 데이터를 한 번에 읽어 상향식 방식으로 색인 구조의 공간 활용도를 증가시키는 벌크 로딩 기법들이 제안되었다. 하지만 CPU기반에서 개별의 노드들을 순차적으로 질의처리 하는 계층적 색인 구조는 공간 활용도의 증가와 노드 간의 중첩 영역을 줄이는 것만으로는 질의 처리 성능 향상에 한계가 있다. 따라서 본 논문에서는 기존의 CPU기반 계층적 색인 구조 중의 대표적인 예인 R-tree의 저장 구조를 GPU 메모리에 적합하도록 변경을 하였다. 또한 기존 CPU기반 계층적 색인구조의 순차적인 노드 검색을 GPU를 이용해 병렬적으로 노드를 검사하여 성능을 향상시켰다. 이와 같은 방식으로 질의 영역의 크기에 따라서 성능 향상정도가 다르지만 최대 100배 이상의 성능을 향상시켰다.

목차

요약
1. 서론
2. GPU상의 R-tree 노드
3. GPU를 이용한 R-tree 질의처리
4. 실험 결과
5. 결론
참고문헌

참고문헌 (0)

참고문헌 신청

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2013-569-000355594