메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
강남이 (전북대학교) 박정기 (전북대학교) 조기성 (전북대학교) 유연 (석곡관측과학기술연구원)
저널정보
대한공간정보학회 대한공간정보학회지 한국지형공간정보학회지 제20권 제3호
발행연도
2012.9
수록면
65 - 71 (7page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

이 논문의 연구 히스토리 (3)

초록· 키워드

오류제보하기
최근 고해상도 위성영상은 자연자원이나 환경 관리에 필요로 하는 토지 피복 및 이용 현황자료 등에 유용하게 사용되고 있는 실정이다. 이에 따라 고액의 투자가 필요로 하는 위성영상의 효율성을 높이기 위하여 영상자료의 분석과정이 중요해지고 있다. 따라서 본 연구에서는 전처리 과정 중 연구대상에 대한 통계값에 대한 계산 및 분석을 수행하였으며, 전통적인 분류 기법인 최대우도 분류 외에도 인공신경망 분류와 SVM 분류에 대하여 설명하고 고해상도 위성영상인 IKONOS영상에 각 분류기법을 적용하여 토지피복분류를 하였으며, 각각의 결과를 오차 행렬을 통해 정확도 분석을 수행하였다. 그 결과 다른 분류 기법에 비해 Support Vector Machines(SVM) 분류 기법이 전체 정확도가 약 86%정도로 가장 우위의 결과물을 도출하였다.

목차

Abstract

요지

1. 서론

2. 감독 분류 알고리즘

3. 연구대상지역 선정 및 분석

4. 결론

참고문헌





참고문헌 (1)

참고문헌 신청

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2014-533-001255846