메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술대회자료
저자정보
Sukree Sinthupinyo (Chulalongkorn University) Warut Roadrungwasinkul (Chulalongkorn University) Charoon Chantan (Chulalongkorn University)
저널정보
제어로봇시스템학회 제어로봇시스템학회 국제학술대회 논문집 ICCAS-SICE 2009
발행연도
2009.8
수록면
3,160 - 3,165 (6page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
Key stroke biometric has been widely investigated to enable an or dinary keyboard to bean authenticable input device. Most of the existing studies have analysed keystroke latencies in some frequently-used, short, fixed-length strings, e.g. user name and password, to strengthen authentication in general login processes. Mean while, an umber of studies have been recently proposed to use keystroke latency in freetext domainin which as equence of key strokes is generally longer than username and password. However, the methods used in both short text and long text are different. General supervised classifiers which are used with a fixed number of attributes can not be applied to the variable-length free text. In this paper, we thus propose a new method which can employ Back propagation Neural Net work to classify the users using keystroke latency times from non-fixed length text. Our method first clusters the latency between a pair of characters or digraph, and then discovers the group of digraphs which identifies each user. Next, the cluster membership is used as input features of the networks. The results show that our method can recognize unseen users with ahigher accuracy than the other methods run in our experiments.

목차

Abstract
1.INTRODUCTION
2.KEYSTROKE ANALYSES
3.METHODOLOGY
4.EXPERIMENTS
5.CONCLUSION
REFERENCES

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2014-569-000768122