메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
이지은 (연세대학교) 유선국 (연세대학교)
저널정보
대한전자공학회 전자공학회논문지 전자공학회논문지 제50권 10호
발행연도
2013.10
수록면
207 - 216 (10page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
본 연구의 목적은 수면상태 분석을 위한 분류기를 설계해줌과 동시에 생체신호를 기반으로 하여 수면상태 판별에 유효한 주요 특징벡터들을 추출함에 있다. 수면은 인간의 삶에 중요한 영향을 끼친다. 따라서 사람들이 수면부족 혹은 수면장애를 겪게 되면 집중력 감퇴, 인지기능 장애 등의 문제를 가질 우려가 생기게 되므로, 수면단계 판별에 관한 많은 연구들이 이루어지고 있다. 본 연구에서는 피험자가 수면을 취하는 동안 피험자의 생체신호를 획득하였다. 획득 된 생체신호로부터 필터링 등의 전처리 과정을 통하여 특징들을 추출하여 주었다. 추출된 특징들은 유전 알고리즘과 신경망을 결합하여 만든 새로운 알고리즘의 입력으로 사용되었으며, 알고리즘은 수면단계 분석을 위하여 높은 가중치를 가지는 특징을 선택하여 주었다. 이에 따른 결과로 뇌파 신호와 심전도 신호 모두 사용 시 알고리즘의 정확도는 약 90.26%가 나왔으며, 선택되어진 특징은 뇌파 신호의 α파와 δ파의 주파수 파워와 심전도 신호의 SDNN(Standard deviation of all normal RR intervals)이다. 선택된 특징은 수면상태를 분류하는데 중요한 역할을 함을 알고리즘을 반복적으로 수행하여 확인하였고, 이 연구는 추후 수면장애의 진단 혹은 수면분석의 지침을 만드는데 사용가능할 것으로 사료된다.

목차

요약
Abstract
Ⅰ. 서론
Ⅱ. 방법
Ⅲ. 결과
Ⅳ. 토의 및 결론
REFERENCES

참고문헌 (25)

참고문헌 신청

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2014-560-002720190