메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술대회자료
저자정보
Kwang Jin Lee (Gwangju Institute of Science and Technology (GIST)) Boreom Lee (Gwangju Institute of Science and Technology (GIST))
저널정보
제어로봇시스템학회 제어로봇시스템학회 국제학술대회 논문집 ICCAS 2013
발행연도
2013.10
수록면
181 - 184 (4page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
Surface electromyography (EMG) is used for rehabilitation and clinical treatment for muscle disease. However, these recordings are often critically contaminated by cardiac artifact and many methods are applied to EMG in order to remove the artifacts from the EMG signals. We applied to both simulation and real EMG data a recently developed method of a combination of ensemble empirical mode decomposition and independent component analysis (EEMD+ICA), and compared its performance with that of other previously developed filtering methods. Relative root-mean-square errors (RRMSE) and correlations between the cleaned EMG and ECG contaminated EMG were calculated to evaluate the performance. The EMD based single channel technique showed better performance compared to the cubic smoothing spline and high-pass-filter (HPF) method for varied amplitude without a reference signal. Therefore, if the reference signal is not present, the combined EEMD and ICA procedure prove to be a reliable and efficient tool for removing ECG artifact from surface EMG.

목차

Abstract
1. INTRODUCTION
2. METHOD
3. Simulation and Experiment
4. DISCUSSTION AND CONCLUSION
REFERENCES

참고문헌 (0)

참고문헌 신청

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0