메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
이영민 (서울대학교) 박우진 (서울대학교  ) 유기윤 (서울대학교)
저널정보
대한공간정보학회 대한공간정보학회지 한국지형공간정보학회지 제22권 제4호
발행연도
2014.12
수록면
21 - 30 (10page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
최근 소셜 미디어의 활성화로 인해 소셜 네트워크상에서 수많은 자발적 추종자들을 확보한 새로운 형태의 유력자가 대두되고 있다. 소셜 네트워크상에서의 유력자를 탐색하는 연구들이 진행되어 왔고, 관련 서비스가 제공 중에 있으나 이들은 유력자 규명에 있어 위치기반 소셜 네트워크 서비스(LBSNS)가 가지고 있는 위치 정보에 대한 반영이 부족하다는 한계점을 가지고 있었다. 이에 본 연구에서는 공간통계분석기법을 이용하여 LBSNS 데이터를 대상으로 다양한 사회문화적 이슈에 대한 발언에 영향력을 가지는 유력자를 공간적으로 탐색하고, 이를 활용하는 방안을 제시하고자 하였다. 이를 위해 트위터의 지오태깅된 메시지를 분석 데이터로 사용하였으며, 서울시를 공간적 범위로 하여 한 달 동안 총 168,040건의 메시지를 수집하였다. 또한 ‘정치’, ‘경제’, ‘IT’를 연구 대상 범주로 설정하고, 데이터 수집 기간 동안 이슈가 되었던 키워드들을 주어진 범주별로 분류하였다. 이를 바탕으로 키워드에 대한 유력자를 파악하기 위한 노출도를 도출하고, 이에 대해 서울시의 행정동을 기준으로 공간결합연산을 실시함으로써 각 키워드에 대한 행정동별 노출도를 산출하였다. 그리고 행정동별로 산출된 노출도의 공간적 의존성을 고려하여 유력지수를 도출하였으며, 키워드별로 상위의 유력지수를 보이는 지역을 유력지역으로 추출하여 이들의 공간적인 분포 특성과 키워드들 간의 공간적 상관성을 분석하였다. 실험 결과, 동일 범주 내에서 키워드 간의 공간적 상관계수는 0.3 이상으로 높은 상관성을 보였으며, 정치범주와 경제범주의 키워드 간 상관계수 역시 평균 0.3으로 비교적 높은 상관성을 보인 반면, 정치범주와 IT범주, 경제범주와 IT범주 키워드 간의 상관계수는 각각 0.18, 0.15로 낮은 상관성을 보였다. 본 연구는 유력자에 대한 연구를 공간 정보의 관점에서 구체화시켰다는 점에서 의의를 가지며, 향후에 gCRM(geographic Customer Relationship Management) 등의 분야에 유용하게 활용될 수 있을 것이다.

목차

要旨
Abstract
1. 서론
2. 유력자 정보의 공간적 탐색기법
3. 실험 적용 및 결과
4. 결론
References

참고문헌 (0)

참고문헌 신청

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2016-533-000983638