메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
송은지 (남서울대학교)
저널정보
한국정보통신학회 한국정보통신학회논문지 한국정보통신학회논문지 제19권 제4호
발행연도
2015.4
수록면
780 - 786 (7page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
SNS 등과 같은 소셜 미디어는 실시간으로 자발적인 고객의 의견들을 대거 포함하고 있어 최근 기업들은 효율적인 경영을 위해 소셜 미디어상의 빅 데이터를 분석하는 시스템을 이용하여 고객피드백에 관한 정보를 수집하고 분석하고 있다. 그러나 온라인 사이트에서 수집한 데이터는 띄어쓰기와 철자 오류가 많아 기존의 형태소 분석기로는 정확한 분석을 할 수 없다. 또한 온라인 상의 문장은 짧다는 특징이 있어 상호 정보량, 카이제곱 통계량 등과 같은 기존의 의미 선택 방법을 이용하게 되면 문장 내 선택 할 수 있는 의미의 부재로 인해 정확한 감성 분류를 할 수 없다는 문제점이 있다. 이러한 문제점들을 해결하기 위해서 본 논문에서는 초/중성 및 어절 패턴 사전을 이용해서 보정할 수 있는 모듈과 문장 내 품사의 우선순위를 이용한 의미 선택 방법을 제안한다. 이러한 방법으로 형태소 분석기에서 추출된 품사 정보를 기반으로 용언과 체언을 분리해서 분석 해당 품사에 종속적인 속성 DB 구축 한 후 학습에 의해 누적된 속성 DB를 사용하여 보다 정확한 긍/부정 감성을 추출한다.

목차

요약
ABSTRACT
Ⅰ. 서론
Ⅱ. 관련 연구
Ⅲ. 감성분석 모듈 구성 방법
Ⅳ. 결론 및 향후과제
REFERENCES

참고문헌 (11)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2016-559-001289986