메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
안효식 (금오공과대학교) 김경훈 (픽셀플러스) 신경욱 (금오공과대학교)
저널정보
한국정보통신학회 한국정보통신학회논문지 한국정보통신학회논문지 제19권 제9호
발행연도
2015.9
수록면
2,153 - 2,160 (8page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
EGML (effective Gaussian mixture learning) 기반 이동 객체 검출 (moving object detection; MOD) 알고리듬의 하드웨어 구현을 위한 설계조건을 분석하였다. EGML 알고리듬을 OpenCV 소프트웨어로 구현하고 다양한 영상들에 대한 시뮬레이션을 통해 배경학습 시간과 이동 객체 검출에 영향을 미치는 파라미터 조건을 분석하였다. 또한, 고정소수점 시뮬레이션을 통해 파라미터들의 비트 길이가 이동 객체 검출 성능에 미치는 영향을 평가하고, 최적 하드웨어 설계 조건을 도출하였다. 본 논문의 파라미터 비트 길이를 적용한 고정소수점 이동 객체 검출 모델은 부동소수점 연산 대비 약 절반의 비트 길이를 사용하면서 MOD 성능의 차이는 0.5% 이하이다.

목차

요약
ABSTRACT
Ⅰ. 서론
Ⅱ. 이동 객체 검출 기술 동향
Ⅲ. 배경 차분 기반 이동 객체 검출
Ⅳ. 소프트웨어 구현 및 파라미터 분석
Ⅴ. 고정소수점 비트 길이 분석
Ⅵ. 결론
REFERENCES

참고문헌 (16)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2016-559-001896558