메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
김진율 (수원대학교) 정재기 (UDworks)
저널정보
한국통신학회 한국통신학회논문지 한국통신학회논문지 제40권 제10호
발행연도
2015.10
수록면
2,090 - 2,101 (12page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
본 논문은 ACM(active contour model)과 색상기반 PF(particle filter)의 장점을 결합하여 크기와 색상이 변화하는 객체에 대해 강인한 추적이 가능한 방법을 제안한다. 제안하는 방법은 색상기반의 PF 추적기, 윤곽선을 추적하는 ACM 추적기, 그리고 두 추적기의 추정 정보를 결합하여 최종적인 객체의 위치와 스케일을 결정하고 또 참조 모델의 업데이트 여부를 결정하는 Decision 부로 이루어진다. PF 추적기는 객체의 형태변화와 모션블러에 강인하지만 위치와 스케일의 정확도가 떨어지고, ACM 추적기는 배경 클러터가 없는 경우에는 객체의 윤곽을 정확하게 추출하지만 복잡한 배경에서는 추적에 실패하는 문제가 있다. 본 논문에서는 색상 PF 추적기가 추정한 객체 위치와 스케일 정보를 이용하여 ACM의 내부 에너지를 제어함으로써 ACM의 스네이크 포인터가 객체가 아닌 배경 클러터로 수렴되는 것을 방지하여 정확히 객체의 윤곽을 추적할 수 있도록 하였다. 사람의 머리 윤곽선을 포함한 얼굴 추적에 제안된 알고리즘을 적용하고 추정 위치와 스케일 오차를 분석하여 성능을 분석하였으며 제안된 방식이 기존 기법들보다 추적 성능이 우수함을 보였다.

목차

요약
ABSTRACT
Ⅰ. 서론
Ⅱ. 기존 알고리즘
Ⅲ. 제안하는 객체 추적 알고리즘
Ⅳ. 실험 및 분석
Ⅴ. 결론
References

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0