메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술대회자료
저자정보
이준환 (광운대학교) 정현조 (광운대학교) 유지상 (광운대학교)
저널정보
한국방송·미디어공학회 한국방송미디어공학회 학술발표대회 논문집 2016년도 한국방송·미디어공학회 하계학술대회
발행연도
2016.6
수록면
25 - 28 (4page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
본 논문에서는 실시간 얼굴 추적을 위하여 기존의 CamShift 알고리즘의 단점을 보완한 새로운 CamShift 알고리즘을 제안한다. 배경 내 추적 객체와 색상이 유사한 객체가 존재할 경우 기존 CamShift 알고리즘은 불안정한 추적을 보여준다. 이러한 문제점을 화소 단위로 거리정보를 획득할 수 있는 Kinect 의 깊이 정보와 HSV 색공간 기반의 피부색 후보영역을 추출하는 Skin Detection 알고리즘을 이용하여 색상분포만 이용하는 기존의 CamShift 의 단점을 보완한다. 또한 추적하던 객체가 사라지거나 가려짐이 발생할 경우에도 다시 추적할 수 있는 특징점 기반의 매칭 알고리즘을 통하여 차폐영역에 강인한 특성을 가지게 한다. 이러한 향상된 CamShift 알고리즘을 사람의 얼굴 추적에 적용함으로써 다양한 분야에 활용 가능한 강인한 얼굴추적 알고리즘을 제안하고자 한다. 실험결과 제안하는 알고리즘은 기존의 추적 알고리즘인 TLD 보다 월등히 빠른 처리속도와 더 우수한 추적성능을 보여주었고, CamShift 보다 조금 느리지만 기존의 CamShift 가 가지고 있는 문제점들을 해결하였다.

목차

요약
1. 서론
2. 가 려짐에 강 인한 CamShift 기반 실 시간 얼굴 추적 방법
3. 실 험결과
4. 결론
5. 참 고문헌

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2017-567-001007355