메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
김창범 (전남대학교)
저널정보
한국항만경제학회 한국항만경제학회지 한국항만경제학회지 제31집 제1호
발행연도
2015.3
수록면
69 - 84 (16page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
본고는 개입 승법계절 ARIMA모형과 인공신경망모형을 이용하여 해상운송 물동량을 추정하고 사전적 예측치를 도출하였다. 개입 ARIMA의 추정결과 오차항에서 자기상관이 존재하지 않고 정규성이 존재함으로써 오차항의 기본가정이 잘 충족되고 있음을 확인하였다. 그리고 개입 승법계절 ARIMA모형과 인공신경망모형에 대해 예측실적 오류를 ME, MAE, RMSE, MSE로 측정한 결과 ARIMA (2,1,0)(1,0,1)12이 가장 우수한 예측모형임을 확인할 수 있었다. 2015년부터 2019년까지의 기간에 대해 개입 ARIMA모형을 이용한 해상운송 물동량의 사전적 예측치 결과 4.54%에서 4.99%의 연평균 증가율을 보였고, 인공신경망모형을 이용한 예측결과 2.00%에서 2.44%까지의 연평균 증가율을 나타냈다.

목차

Abstract
Ⅰ. 서론
Ⅱ. 이론적 배경
Ⅲ. 개입 승법계절 ARIMA와 인공신경망모형을 이용한 사후적 예측
Ⅳ. 개입 승법계절 ARIMA와 인공신경망모형을 이용한 사전적 예측
Ⅴ. 요약 및 결론
참고문헌
국문요약

참고문헌 (16)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0