메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
김종환 (경기대학교) 김종훈 (경기대학교) 김인철 (경기대학교)
저널정보
Korean Institute of Information Scientists and Engineers 정보과학회 컴퓨팅의 실제 논문지 정보과학회 컴퓨팅의 실제 논문지 제21권 제12호
발행연도
2015.12
수록면
774 - 779 (6page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

이 논문의 연구 히스토리 (2)

초록· 키워드

오류제보하기
본 논문에서는 단위 추론 작업들 간의 순차 처리와 반복 처리에 효과적인 인-메모리 방식의 고속 클러스터 컴퓨팅 환경인 Apache Spark을 이용한 대용량의 정성적 공간 추론기의 설계와 구현에 관해 소개한다. 본 논문에서 제안하는 공간 추론기는 매우 효율적인 방법으로, 공간 객체들 간의 위상 관계와 방향 관계를 나타내는 대규모 공간 지식베이스의 무결성을 검사할 수 있을 뿐만 아니라, 주어진 공간지식베이스로부터 새로운 사실들을 유도해냄으로써 지식베이스를 확장할 수도 있다. 일반적으로 공간 객체들 간의 위상 관계와 방향 관계에 관한 정성적 추론은 이접 관계들 간의 많은 조합 연산들을 포함한다. 본 추론기에서는 공간 추론에 필요한 최소한의 이접 관계 집합을 찾아내고 이들만을 포함하도록 조합 표를 축소함으로써, 추론의 효율성을 크게 개선시켰다. 또한, 본 추론기에서는 추론 성능 향상을 위해 Hadoop 클러스터 시스템에서 분산 추론 작업이 진행되는 동안 디스크 입출력을 최소화하도록 설계하였다. 대용량의 가상 및 실제 공간 지식베이스를 이용한 실험들에서, 본 논문에서 제안하는 Apache Spark 기반의 정성적 공간 추론기가 MapReduce 기반의 기존 추론기보다 더 높은 성능을 보여주었다.

목차

요약
Abstract
1. 서론
2. 정성적 공간 추론
3. Spark 기반의 대용량 공간 추론기 설계
4. 구현 및 성능실험
5. 결론
References

참고문헌 (6)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0