메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
Yongjoo Kim (Electronics and Telecommunications Research Institute) Jongeun Lee (Ulsan National Institute of Science and Technology) Jinyong Lee (Seoul National University) Yunheung Paek (Seoul National University)
저널정보
대한전자공학회 JOURNAL OF SEMICONDUCTOR TECHNOLOGY AND SCIENCE Journal of Semiconductor Technology and Science Vol.15 No.6
발행연도
2015.12
수록면
634 - 646 (13page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
Coarse-Grained Reconfigurable Architecture (CGRA) is a very promising platform that provides fast turn-around-time as well as very high energy efficiency for multimedia applications. One of the problems with CGRAs, however, is application mapping, which currently does not scale well with geometrically increasing numbers of cores. To mitigate the scalability problem, this paper discusses how to use the SIMD (Single Instruction Multiple Data) paradigm for CGRAs. While the idea of SIMD is not new, SIMD can complicate the mapping problem by adding an additional dimension of iteration mapping to the already complex problem of operation and data mapping, which are all interdependent, and can thus significantly affect performance through memory bank conflicts. In this paper, based on a new architecture called SIMD reconfigurable architecture, which allows SIMD execution at multiple levels of granularity, we present how to minimize bank conflicts considering all three related sub-problems, for various RA organizations. We also present data tiling and evaluate a conflictfree scheduling algorithm as a way to eliminate bank conflicts for a certain class of mapping problem.

목차

Abstract
I. INTRODUCTION
II. RELATED WORK
III. SIMD RECONFIGURABLE ARCHITECTURE
IV. MAPPING FOR FULL-CROSSBAR SIMD RECONFIGURABLE ARCHITECTURES
V. MAPPING FOR SCALABLE SIMD RECONFIGURABLE ARCHITECTURES
VI. EXPERIMENTS
VII. CONCLUSIONS
REFERENCES

참고문헌 (26)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2016-569-002142084