메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
백용규 (Seoil University) 윤연주 (Samsung C&T) 문진우 (Chung-Ang University)
저널정보
한국생태환경건축학회 KIEAE Journal KIEAE Journal Vol.16 No.3(Wn.79)
발행연도
2016.6
수록면
89 - 94 (6page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
Purpose: This study aimed at developing an artificial neural network (ANN) model to predict the optimal start moment of the setback temperature during the normal occupied period of a building. Method: For achieving this objective, three major steps were conducted: the development of an initial ANN model, optimization of the initial model, and performance tests of the optimized model. The development and performance testing of the ANN model were conducted through numerical simulation methods using transient systems simulation (TRNSYS) and matrix laboratory (MATLAB) software. Result: The results analysis in the development and test processes revealed that the indoor temperature, outdoor temperature, and temperature difference from the setback temperature presented strong relationship with the optimal start moment of the setback temperature; thus, these variables were used as input neurons in the ANN model. The optimal values for the number of hidden layers, number of hidden neurons, learning rate, and moment were found to be 4, 9, 0.6, and 0.9, respectively, and these values were applied to the optimized ANN model. The optimized model proved its prediction accuracy with the very storing statistical correlation between the predicted values from the ANN model and the simulated values in the TRNSYS model. Thus, the optimized model showed its potential to be applied in the control algorithm.

목차

ABSTRACT
1. 서론
2. 인공신경망모델 개발
3. 개발결과 및 성능분석
4. 결론
Reference

참고문헌 (24)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2017-610-000847122