메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
김권양 (경일대학교)
저널정보
한국지능시스템학회 한국지능시스템학회 논문지 한국지능시스템학회 논문지 제26권 제4호
발행연도
2016.8
수록면
301 - 307 (7page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
본 논문에서는 사용자들이 노래 가사를 입력으로 음악을 검색할 때 사용자의 질의어 특징을 반영한 검색 방법을 제안한다. 일반적으로 노래 가사 검색에서 사용자들이 작성하는 질의어들은 음악 하이라이트 부분에 해당된다는 점을 고려하여 본 논문에서는 노래 가사를 색인할 때, 하이라이트 부분이 더 중요하도록 만든다. 이를 위해 본 논문에서는 응집 계층 군집화를 사용하여 자동으로 음악 하이라이트 부분을 찾고, 하이라이트 부분과 그 주변 부분을 중요하게 고려할 수 있는 가우시안 중요도를 제안한다. 이 가우시안 함수는 평균을 하이라이트 부분으로 설정함으로써 하이라이트에서 가장 높은 값을 가지며, 주변부는 하이라이트보다 낮은 중요도를 가진다. 이렇게 얻어진 중요도와 함께 노래 가사를 색인함으로써 사용자들이 작성한 질의어에 대해 더 부합하는 검색 결과를 제공해준다. 실험에서 실사용자 5명에 대해 다양한 질의 타입들과 함께 평가하였으며, 가중치를 고려하지 않는 비교 모델보다 제안한 방법이 효과적임을 보인다.

목차

요약
Abstract
1. 서론
2. 관련연구
3. 하이라이트 기반 노래 가사 검색
4. 실험
5. 결론 및 향후 연구
References

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2017-003-000985677