메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
홍은빈 (포항공과대학교) 전준호 (포항공과대학교) 이승용 (포항공과대학교)
저널정보
Korean Institute of Information Scientists and Engineers Journal of KIISE Journal of KIISE Vol.43 No.12
발행연도
2016.12
수록면
1,356 - 1,364 (9page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
본 논문에서는 딥러닝 기법 중 하나인 deep convolutional neural network (DCNN)을 이용하여 영상의 구도를 개선하는 방법을 제시한다. 기존의 구도 개선 방법들은 영상의 주요 물체의 위치를 바탕으로 한 구도 평가 점수를 정의한 뒤 최적화를 통해 평가 점수를 향상시키는 방향으로 영상을 개선한다. 이는 계산량이 많고 기존 주요 물체 검출 알고리즘의 성능에 종속적이기 때문에 영상에 따라 구도 개선이 제대로 수행되지 않는 경우가 존재한다. 본 논문에서는 영상의 특징 추출에 뛰어난 성능을 보이는 DCNN을 이용해 영상을 반복적으로 크롭하여 미학적으로 구도가 개선된 영상을 얻는 방법을 제안한다. 실험 결과 및 사용자 평가를 통해 본 논문에서 제안한 알고리즘이 주어진 영상을 특정 구도 가이드라인(삼분할법, 주요 물체의 크기 등)을 따르도록 자동으로 크롭한다는 것을 보인다.

목차

요약
Abstract
1. 서론
2. 관련 연구
3. 구도 가이드라인
4. CNN을 이용한 영상 구도 개선
5. 실험 결과
6. 결론 및 향후 연구
References

참고문헌 (11)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2017-569-001860023