메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술대회자료
저자정보
김용년 (한국지엠) 강선제 (한국지엠) 송봉하 (한국지엠) 김용석 (한국지엠)
저널정보
한국자동차공학회 한국자동차공학회 추계학술대회 및 전시회 2015년 한국자동차공학회 학술대회 및 전시회
발행연도
2015.11
수록면
788 - 795 (8page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

이 논문의 연구 히스토리 (2)

초록· 키워드

오류제보하기
This paper presents the development on the Aerodynamic performance of the 2016 Chevrolet the Next Spark. This 2016 Spark is fully changed on the exterior styling and the architecture comparing from its previous version released in 2009 and it was conducted to improve Aerodynamic performance to support fuel economy and fuel consumption.
To reduce the drag of the 2016 Spark, Exterior skin is fully optimized to have best Aerodynamic performance. And several Aerodynamic treatments are applied such as flat underbody, low leakage for cooling flow, and add-on Aerodynamics devices.
Biggest contribution on drag of the vehicle is coming from exterior surface and underbody shape. This 2016 Spark was developed to have better drag coefficient on these exterior surface and underbody shape. For reducing drag on the exterior surface, it was conducted to optimize the exterior surface cooperated with Exterior studio from early development stage. In this development, Aero was involved from proportion development of the vehicle and theme development. This new vehicle is able to get 58 counts drag reduction from its initial styling model. And for reducing drag on the underbody structure, this vehicle is applied not to have vertical wall on the underbody structure decreasing pressure load. General vehicle and previous version of the Spark have vertical wall on the underbody structure against flow direction to support vehicle safety, but this 2016 Spark is adopted and designed flat underbody structure considering not hurting vehicle safety in early stage of development. This concept was contributed to reduce drag on the underbody structure.
Also, this vehicle is developed low leakage cooling flow between the grill and the radiator. The 2016 Spark is reduced 8% - 19% in each powertrain variant comparing to the previous version. This improved cooling flow leakage contributes drag reduction decreasing non-effective flow goes into the engine room.
And this vehicle adopted the enhanced airdam, Aerodynamic friendly OSRVM, D-pillar applique integrated roof spoiler, and edged side corner on taillamp, etc.
In this development, Aero spends 344 hours for wind tunnel test of the 2016 Spark. And, there was 38 simulation runs for Aero CFD analysis and there was 5 times architecture change reflecting changed body structure. This development was supported to reduce drag 8.3% from the previous Spark and the 2016 Spark is able to lead Aerodynamic performance in the A segment.

목차

Abstract
1. 서론
2. 풍동 시험과 수치 해석 기법
3. 공력 성능(항력 계수) 목표 설정(Target setup on coefficient of drag)
4. 2016 SPARK 공력 성능 개발 (Exterior skin development)
5. 결론
References

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2017-556-002268539