메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
김정준 (Kyungpook National University) 이승민 (Kyungpook National University) 류강수 (Gumi University) 이종학 (Catholic University of Daegu) 박길흠 (Kyungpook National University)
저널정보
한국멀티미디어학회 멀티미디어학회논문지 멀티미디어학회논문지 제20권 제3호
발행연도
2017.3
수록면
465 - 473 (9page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
Electrocardiogram(ECG) signal is one of the unique bio-signals of individuals and is used for personal authentication. The existing studies on personal authentication method using ECG signals show a high detection rate for a small group of candidates, but a low detection rate and increased execution time for a large group of candidates. In this paper, we propose a hierarchical algorithm that extracts fiducial points based on curvature of ECG signals as feature values for grouping candidates and identifies candidates using waveform-based comparisons. As a result of experiments on 74 ECG signal records of QT-DB provided by Physionet, the detection rate was about 97% at 3-heartbeat input and about 99% at 5-heartbeat input. The average execution time was 22.4 milliseconds. In conclusion, the proposed method improves the detection rate by the hierarchical personal authentication process, and also shows reduced amount of computation which is plausible in real-time personal authentication usage in the future.

목차

ABSTRACT
1. 서론
2. 계층적 심전도 신호 개인인증
3. 실험 및 결과
4. 결론
REFERENCE

참고문헌 (24)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2017-004-002383190