메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
양훈준 (인하대학교) 장혁 (한국전자통신연구원) 정재협 (인하대학교) 이보원 (인하대학교) 정동석 (인하대학교)
저널정보
대한전자공학회 전자공학회논문지 전자공학회논문지 제54권 제3호 (통권 제472호)
발행연도
2017.3
수록면
70 - 77 (8page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
최근 IoT 및 딥러닝 관련 기술요소들이 영상보안감시시스템에서도 다양하게 응용되고 있다. 그 중 CCTV를 통해 촬영된 동영상에서 자동으로 특정 객체를 검출, 추적, 분류 하는 감시 기능이 점점 지능화되고 있다. 본 논문에서는 보급형 CPU만 사용하는 PC 환경에서도 실시간 처리가 가능한 알고리즘을 목표로 하였다. GMM(Gaussian Mixture Model)을 이용한 배경 모델링과 헝가리안 알고리즘, 그리고 칼만 필터를 조합한 추적 알고리즘은 전통적이며 복잡도가 비교적 적지만 검출 오류가 높다. 이를 보강하기 위해 대용량 데이터 학습에 적합한 딥러닝을 기술을 적용하였다. 특히 움직임이 있는 사람의 특징을 강조하기 위해 추적된 객체에 대해 SRGB-3 Layer CNN을 사용하였다. 성능 평가를 위해 기존의 HOG와 SVM을 이용한 시스템과 비교했을 때 Move-in은 7.6%, Move-out은 9.0%의 오류율 감소가 있었다.

목차

요약
Abstract
Ⅰ. 서론
Ⅱ. 본론
Ⅲ. 실험
Ⅳ. 결론
REFERENCES

참고문헌 (14)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2017-569-002364211