메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
이현구 (강원대학교) 김학수 (강원대학교)
저널정보
Korean Institute of Information Scientists and Engineers Journal of KIISE Journal of KIISE Vol.44 No.7
발행연도
2017.7
수록면
674 - 679 (6page)
DOI
10.5626/JOK.2017.44.7.674

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
대용량의 텍스트 문서가 매일 만들어지는 빅데이터 환경에서 제목은 문서의 핵심 아이디어를 빠르게 집어내는데 매우 중요한 단서가 된다. 그러나 블로그 기사나 소셜 미디어 메시지와 같은 많은 종류의 문서들은 제목을 갖고 있지 않다. 본 논문에서는 주의집중 및 복사 작용을 가진 sequence-to-sequence 순환신경망을 사용한 제목 생성 모델을 제안한다. 제안 모델은 양방향 GRU(Gated Recurrent Unit) 네트워크에 기반 하여 입력 문장을 인코딩(encoding)하고, 입력 문장에서 자동 선별된 키워드와 함께 인코딩된 문장을 디코딩함으로써 제목 단어들을 생성한다. 93,631문서의 학습 데이터와 500문서의 평가 데이터를 가진 실험에서 주의집중 작용방법이 복사 작용방법보다 높은 어휘 일치율(ROUGE-1: 0.1935, ROUGE-2:0.0364, ROUGE-L: 0.1555)을 보였고 사람이 정성평가한 지표는 복사 작용방법이 높은 성능을 보였다.

목차

요약
Abstract
1. 서론
2. 관련연구
3. 문장과 키워드를 통한 제목 생성 모델
4. 실험 및 평가
5. 결론
References

참고문헌 (18)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0