메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술대회자료
저자정보
김준헌 (성균관대학교) 송병후 (성균관대학교) 신동렬 (성균관대학교)
저널정보
한국컴퓨터정보학회 한국컴퓨터정보학회 학술발표논문집 2017년 한국컴퓨터정보학회 하계학술대회 논문집 제25권 제2호
발행연도
2017.7
수록면
13 - 16 (4page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
제스처 인식은 HCI(Human-Computer Interaction) 및 HRI(Human-Robot Interaction) 분야에서 활발히 연구되고 있는 기술이며, 제스처 데이터의 특징을 추출해내고 그에 따른 분류를 통하여 사용자의 제스처를 정확히 판별하는 것이 중요한 과제로 자리 잡았다. 본 논문에서는 EMG(Electromyography) 센서로 측정한 사용자의 손 제스처 데이터를 분석하는 방안에 대하여 서술한다. 수집된 데이터의 노이즈를 제거하고 데이터의 특징을 극대화시키기 위하여 연속적인 데이터로 변환하는 전처리 과정을 거쳐 이를 머신 러닝 알고리즘을 사용하여 분류하였다. 이 때, 기존의 raw 데이터와 전처리 과정을 거친 데이터의 성능을 decision-tree 알고리즘을 통하여 비교하였다.

목차

요약
I. Introduction
II. Preliminaries
III. The Proposed Scheme
IV. experiment Result
V. Conclusions
Acknowledgement
REFERENCES

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2018-004-000973369