메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
홍상표 (인하대학교) 김연욱 (인하대학교) 조우형 (인하대학교) 좌경림 (인하대병원) 정한영 (인하대병원) 김규성 (인하대병원) 이상민 (한국대학교)
저널정보
한국재활복지공학회 재활복지공학회논문지 재활복지공학회논문지 제11권 제1호
발행연도
2017.2
수록면
53 - 62 (10page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

이 논문의 연구 히스토리 (2)

초록· 키워드

오류제보하기
본 논문에서는 균형평가도구 중 임상에서 가장 많이 사용되는 BBS(Berg Balance Scale)를 머신러닝 기법을 이용하여 점수 분류 정확도를 제시한다. 데이터취득은 Noraxon 시스템을 이용하여, 신체 8군데(왼쪽·오른쪽 발목, 왼쪽·오른쪽 엉덩이 위, 왼쪽·오른쪽 손목, 등(Back), 이마)에 관성센서를 부착하였다. 관성센서의 3축 가속도데이터를 기반으로 특징벡터 STFT(Short Time Fourier Transform), SAM(Signal Area Magnitude)를 추출하였다. 그 다음, BBS의 항목을 동작특성에 따라 정적인 동작(static movement)과 동적인 동작(dynamic movement)으로 나누었고, BBS의 각 항목에 대하여 점수에 영향이 있는 센서부착위치에 따라 특징벡터를 선별하였다. BBS의 항목마다 선별된 특징벡터는 GMM(Gaussian Mixture Model)을 이용하여 분류하였다. 실험대상자 40명에 대한 정확도 산출결과, 1번순으로 차례대로 55.5%, 72.2%, 87.5%, 50%, 35.1%, 62.5%, 43.3%, 58.6%, 60.7%, 33.3%, 44.8%, 89.2%, 51.8%, 85.1%의 분류 정확도를 확인하였다.

목차

요약
ABSTRACT
1. 서론
2. 제안하는 알고리즘
3. 실험방법
4. 실험결과
5. 결론 및 고찰
REFERENCES

참고문헌 (4)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2018-512-001263749