메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
Parisa Shahnazari-Shahrezaei (Islamic Azad University) Sina Zabihi (Islamic Azad University) Reza Kia (Islamic Azad University)
저널정보
대한산업공학회 Industrial Engineering & Management Systems Industrial Engineering & Management Systems Vol.16 No.3
발행연도
2017.9
수록면
288 - 306 (19page)
DOI
10.7232/iems.2017.16.3.288

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
A Multi-Skilled Project Scheduling Problem (MSPSP) that is an extension of a Multi-Mode Resource-Constrained Project Scheduling Problem (MM-RCPSP) has been generally addressed to schedule a project with staff members as resources. In MSPSP, each activity requires different specialties and each staff member has a known skill level in performing an activity. This causes to encounter a huge number of modes while performing activities of a project. This research focuses on a special type of MSPSP known as Multi-Objective Multi-Skilled Project Scheduling Problem (MOMSPSP) which incorporates some new objectives in the MSPSP and develops a multi-objective mixed-integer nonlinear programming (MINLP) model. The model is exactly solved for small-sized instances using CPLEX solver. To solve such a NP-hard problem for medium and large-sized instances, two efficient meta-heuristic algorithms based on Differential Evolution (DE) and Particle Swarm Optimization (PSO) are proposed. To evaluate the efficiency of the proposed algorithms, the results are compared with each other as well as to the optimal ones obtained by the CPLEX solver for small instances. Finally, the designed DE algorithm is identified as the superior proposed algorithm for solving the propounded MOMSPSP in terms of some performance metrics.

목차

ABSTRACT
1. INTRODUCTION
2. THE PROPOSED MATHEMATICAL MODEL FOR MOMSPSP
3. META-HEURISTIC SOLUTION ALGORITHMS
4. COMPUTATIONAL RESULTS
5. CONCLUSIONS
REFERENCES

참고문헌 (37)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2018-530-001255167