메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
Behnam Hosseinian Nejad (SHIDFER Group and MAHSATOOS Factories) Hiwa Farughi (University of Kurdistan)
저널정보
대한산업공학회 Industrial Engineering & Management Systems Industrial Engineering & Management Systems Vol.20 No.3
발행연도
2021.9
수록면
356 - 372 (17page)
DOI
10.7232/iems.2021.20.3.356

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
In this study, the necessity of considering reliability in projects and its association with other related objectives regarding project"s scheduling is investigated. In this regard, a mathematical model to optimize the objective functions, time and reliability is presented considering budget constraint, and time window for starting activities, float time and multi-mode activities following the review of the literature. Due to the great difficulty of calculations in this model, two metaheuristic algorithms, namely MOPSO and NSGAII are presented to solve the model"s problem in small, average and large scale and then several numerical samples are solved in all above mentioned scales to evaluate the algorithm performance. The results of solving the model using metaheuristic algorithms are compared in small-scale with the results of accurate problem-solving carried out by GAMS optimization software. The results indicate that both metaheuristic algorithms are able to achieve acceptable responses in short time considering all three forms of reliability function. In addition, MOPSO algorithm had the most desirable performance in achieving acceptable responses in less time and NSGAII algorithm had the most desirable performance in more extensively searching the response space.

목차

ABSTRACT
1. INTRODUCTION
2. MATHEMATICAL MODEL
3. PROPOSED SOLUTION METHODS
4. PERFORMANCE EVALUATION FOR PROPOSED ALGORITHMS
5. THE COMPUTATIONAL RESULT
6. DISCCUTION
7. CONCLUTION
REFERENCES

참고문헌 (40)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0