상세검색
비밀번호 변경 안내
비밀번호를 변경하신 지 90일 이상 지났습니다.
개인정보 보호를 위해 비밀번호를 변경해 주세요.
비밀번호 변경 안내
비밀번호를 변경하신 지 90일 이상 지났습니다.
개인정보 보호를 위해 비밀번호를 변경해 주세요.
DOI : 10.7232/JKIIE.2017.43.5.330
UCI(KEPA) : I410-ECN-0101-2018-530-001328325
Sentiment analysis plays an important role in both public and private sectors to understand consumers’ responses to products or voters’ reactions to policies. One of the most key success factors of sentiment analysis is to build an appropriate sentiment word dictionary. Many current existing approaches either heavily rely on the knowledge of domain experts or word co-occurrence statistics, the first of which causes low efficiency and high expenditure while the second of which suffers from incomplete data. In order to resolve these shortcomings, we propose a new domain-specific Korean word sentiment score evaluation method based on word embedding and graph based semi-supervised learning. First, words are embedded in a lower dimensional space by Word2Vec technique. Then, the word relation graph is constructed based on the similarity between words in the embedding space. Then, we assign sentiments to approximately 1% words utilizing some indicators like centrality measure. The sentiment scores of the other unlabeled words are automatically assigned by label propagation with semisupervised learning. To verify our proposed method, we collect 1.98 million review comments from three movie review websites. Experimental results show that the proposed method achieves about 93% accuracy of polarity classification.
1. 서론
2. 선행연구
3. 방법론
4. 실험설계
5. 실험 결과
6. 결론 및 활용방안
참고문헌
도움이 되었어요.0
도움이 안되었어요.0
알림 설정하기
논문 오류신고
신고항목
이 논문의 참고문헌을 찾아주세요.
이 논문의 참고문헌을 찾아주세요.
구매하기
장바구니
인용양식
공식 스폰서와 앰부시 마케팅의 광고 크리에이티브 효과 : 2009 광저우 아시안게임을 중심으로
기관인증