메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
박천음 (강원대학교) 이창기 (강원대학교)
저널정보
Korean Institute of Information Scientists and Engineers 정보과학회 컴퓨팅의 실제 논문지 정보과학회 컴퓨팅의 실제 논문지 제23권 제9호
발행연도
2017.9
수록면
542 - 549 (8page)
DOI
10.5626/KTCP.2017.23.9.542

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

이 논문의 연구 히스토리 (16)

초록· 키워드

오류제보하기
Sequence-to-sequence 모델과 이와 유사한 포인터 네트워크는 입력이 여러 문장으로 이루어지거나 입력 문장의 길이가 길어지면 성능이 저하되는 문제가 있다. 이러한 문제를 해결하기 위해 본 논문에서는 여러 문장으로 이루어진 입력열을 단어 레벨과 문장 레벨로 인코딩을 수행하고, 디코딩에서 단어레벨과 문장 레벨 정보를 모두 이용하는 계층적 포인터 네트워크 모델을 제안하고, 이를 이용하여 모든 멘션(mention)에 대한 상호참조해결을 수행하는 계층적 포인터 네트워크 기반 상호참조해결을 제안한다. 실험 결과, 본 논문에서 제안한 모델이 정확률 87.07%, 재현율 65.39%, CoNLL F1 74.61%의 성능을 보였으며, 기존 규칙기반 모델 대비 24.01%의 성능 향상을 보였다.

목차

요약
Abstract
1. 서론
2. 관련 연구
3. 계층적 포인터 네트워크
4. 계층적 포인터 네트워크를 이용한 상호참조해결
5. 실험
6. 결론
References

참고문헌 (11)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0