메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
Swe Swe Aung (University of the Ryukyus) Itaru Nagayama (University of the Ryukyus) Shiro Tamaki (University of the Ryukyus)
저널정보
대한전자공학회 IEIE Transactions on Smart Processing & Computing IEIE Transactions on Smart Processing & Computing Vol.6 No.5
발행연도
2017.10
수록면
326 - 333 (8page)
DOI
10.5573/IEIESPC.2017.6.5.326

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
Classification is a process of discovering and categorizing objects from large data storage that have similar characteristics, properties, and patterns. One of the most widely used classification methods in machine learning is the k-nearest neighbors (k-NN) algorithm. The unique property of k-NN that appeals to researchers is its simplicity, so it can be applied successfully over a wide field. However, according to measurement of the performance of an algorithm based on three considerations (simplicity, processing time, and prediction power), the k-NN algorithm lacks highspeed computation and maintenance of high accuracy for different K values. In other words, k-NN is a heuristic classification approach. Besides, the prediction accuracy fades away whenever K approaches larger values. To overcome these issues, this paper presents a dual-kNN that concentrates on two properties to keep up the accuracy at different K values and upgrade processing time performance. By conducting experiments on real datasets and comparing this algorithm with k-NN, it was also confirmed that the new dual-kNN is an effective and robust approach to classification.

목차

Abstract
1. Introduction
2. Related Works
3. Classification Approaches Based on kNN
4. Dual-kNN
5. Experiment and Evaluation
6. Conclusion
References

참고문헌 (12)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0