메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
이준석 (순천성가롤로병원) 박수지 (전남대학교) 신항식 (전남대학교)
저널정보
대한전기학회 전기학회논문지 전기학회논문지 제66권 제11호
발행연도
2017.11
수록면
1,634 - 1,640 (7page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

이 논문의 연구 히스토리 (2)

초록· 키워드

오류제보하기
The study aims to distinguish hemiplegic gait and normal gait using simple wearable device and classification algorithm. Thus, we developed a wearable system equipped three axis accelerometer and three axis gyroscope. The developed wearable system was verified by clinical experiment. In experiment, twenty one normal subjects and twenty one patients undergoing stroke treatment were participated. Based on the measured inertial signal, a random forest algorithm was used to classify hemiplegic gait. Four-fold cross validation was applied to ensure the reliability of the results. To select optimal attributes, we applied the forward search algorithm with 10 times of repetition, then selected five most frequently attributes were chosen as a final attribute. The results of this study showed that 95.2% of accuracy in hemiplegic gait and normal gait classification and 77.4% of accuracy in hemiplegic-side and normal gait classification.

목차

Abstract
1. 서론
2. 연구 방법
3. 실험 결과
4. 결론 및 고찰
References

참고문헌 (22)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2018-560-001457641