메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
신한솔 (성균관대학교) 서원준 (성균관대학교) 추한경 (성균관대학교) 라선중 (성균관대학교) 박철수 (성균관대학교)
저널정보
대한건축학회 대한건축학회 논문집 - 구조계 大韓建築學會論文集 構造系 第33卷 第11號 (通卷 第349號)
발행연도
2017.11
수록면
63 - 70 (8page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
In South Korea, an ice thermal storage system is popular because night-time electricity rate is cheaper than daytime rate. A spherical ice ball system is one of the most popular ice thermal storage systems used in Korea. However, it is difficult to estimate the degree of freezing and defrosting of the spherical ice ball system and thus, excessive icing commonly occurs in order to prevent any shortage of stored ice. If this rule-of thumb control can be replaced by a simulation model-based control, there would be significant potential for energy savings. In this study, the authors developed 25 machine learning simulation models for the spherical ice thermal storage system installed in a 30-story office building (gross floor area: 32,600m2) located in Seoul, Korea. Five different machine learning algorithms (Artificial Neural Network, Support Vector Machine, Gaussian Process, Random Forest, and Genetic Programming) were used for five different input scenarios, respectively. The 25 machine learning models are accurate enough to predict the amount of icing required for the following daytime. In addition, with the use of Model Predictive Control (MPC), 16.8% of excessive icing during overnight can be reduced and 15% of cooling energy (chiller, cooling tower, Brine pump, etc.) can be saved.

목차

Abstract
1. 서론
2. 대상 건물
3. 기계학습 방법
4. 익일 방냉량 예측 모델 개발
5. 모델 기반 최적 제어
6. 결론
REFERENCES

참고문헌 (34)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0