메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
Saman Siadati (Islamic Azad University) Mohammad Jafar Tarokh (K. N. Toosi University of Technology) Rassoul Noorossana (Iran University of Science and Technology)
저널정보
대한산업공학회 Industrial Engineering & Management Systems Industrial Engineering & Management Systems Vol.16 No.4
발행연도
2017.12
수록면
455 - 464 (10page)
DOI
10.7232/iems.2017.16.4.455

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
First step of reconfigurable supply chain network developing is understanding of risk affects. Categorizing of risk module and results of risk events considered with gathering and analyzing of data from network design parameters. These obtained data have probability distribution that shows uncertainty in parameters. In the literatures supply chain risk categorized based on occurrences rate or frequency and period or duration time and also place of occurrence. Deal with uncertainty and complexity of risk, our proposed fuzzy method can solve these problems in two aspects. Also described a fuzzy based sampling method (FLHS) that developed and used in this paper can improve our results even more than previous works. This paper suggests a novel modelling and simulation method of fuzzy sampling and fuzzy analysis system to address the dynamic risks effects in the especially the consideration of uncertainty risk event system behavior in different operational conditions.

목차

ABSTRACT
1. INTRODUCTION
2. DESIGN A RECONFIGURABLE MULTI-AGENT HEALTHCARE SUPPLY CHAIN NETWORK UNDER RISK
3. PROPOSED FUZZY LHS SAMPLING
4. PROPOSED METHOD FOR FUZZY RISK
5. RESULTS AND EXPERIENCES
6. CONCLUSIONS AND FUTURE WORKS
REFERENCES

참고문헌 (13)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0