메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
Jeong-Woo Kim (Yonsei University) Jung-Tae Kim (Korea Maritime and Ocean University E) Jae-Hwan Kim (Korea Maritime and Ocean University)
저널정보
한국마린엔지니어링학회 Journal of Advanced Marine Engineering and Technology (JAMET) 한국마린엔지니어링학회지 제42권 제2호
발행연도
2018.2
수록면
127 - 135 (9page)
DOI
10.5916/jkosme.2018.42.2.127

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
In this paper, we propose a new forecasting approach that finds a nearest-neighbor optimum for forecasting. It blends the advantages of subsample use (k-nearest neighbor, rolling window, etc.) and entire sample use. Basically, it belongs to the range of nearest neighbor methods but is different from them in that it also considers the entire sample, which can help to yield less variance in test error than other subsample methods. To improve forecasting accuracy, we also used a modified least squares method in the process of this forecasting approach. From simulation tests, we were able to verify that this approach yielded less test error than other methods that do not adopt this approach. Empirical verification using time-series data on the ship accident also supported that this approach is able to improve forecasting accuracy. In addition, we were able to verify that the test errors obtained from this approach were less than the residuals obtained from fitting using the actual future value in many cases. A new parameter controlling a weight between the subsample and the entire sample is introduced, and the forecasting performance may depend on how this parameter can be efficiently used.

목차

Abstract
1. Introduction
2. Methods
3. Numerical results
4. Conclusion
References

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0