메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
정병호 (경상남도 도청) 임동훈 (경상대학교)
저널정보
한국데이터정보과학회 한국데이터정보과학회지 한국데이터정보과학회지 제28권 제4호
발행연도
2017.7
수록면
755 - 768 (14page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
빅데이터가 4차 산업혁명의 핵심으로 자리하면서 빅데이터 기반 처리 및 분석 능력이 기업의 미래 경쟁력을 좌우할 전망이다. 빅데이터 처리 및 분석을 위한 RHadoop과 RHIPE 모형은 R과 Hadoop의 통합모형으로 지금까지 각각의 모형에 대해서는 연구가 많이 진행되어 왔으나 두 모형간 비교 연구는 거의 이루어 지지 않았다. 본 논문에서는 대용량의 실제 데이터와 모의설험 데이터에서 다중 회귀 (multiple regression)와 로지스틱 회귀 (logistic regression) 추정을 위한 머신러닝 (machine learning) 알고리즘을 MapReduce 프로그램 구현을 통해 RHadoop과 RHIPE 간의 비교 분석하고자 한다. 구축된 분산 클러스터 (distributed cluster) 하에서 두 모형간 성능 실험 결과, RHIPE은 RHadoop에 비해 대체로 빠른 처리속도를 보인 반면에 설치, 사용면에서 어려움을 보였다.

목차

요약
1. 서론
2. R과 Hadoop의 통합모형 개요
3. 관련 알고리즘 개요
4. RHadoop과 RHIPE의 실험 환경
5. RHadoop과 RHIPE의 성능 분석
6. 결론 및 향후연구
References
Abstract

참고문헌 (26)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0