메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
저널정보
한국식품저장유통학회 Food Science and Preservation 한국식품저장유통학회지 제19권 제1호
발행연도
2012.2
수록면
95 - 103 (9page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

이 논문의 연구 히스토리 (4)

초록· 키워드

오류제보하기
The objective of this study was to develop models for the predict of the milk properties (fat, protein, SNF, lactose, MUN) of unhomogenized milk using the visible and near-infrared (NIR) spectroscopic technique. A total of 180 milk samples were collected from dairy farms. To determine optimal measurement temperature, the temperatures of the milk samples were kept at three levels (5℃, 20℃, and 40℃). A spectrophotometer was used to measure the reflectance spectra of the milk samples. Multilinear-regression (MLR) models with stepwise method were developed for the selection of the optimal wavelength. The preprocessing methods were used to minimize the spectroscopic noise, and the partial-least-square (PLS) models were developed to prediction of the milk properties of the unhomogenized milk. The PLS results showed that there was a good correlation between the predicted and measured milk properties of the samples at 40℃ and at 400~2,500 nm. The optimal-wavelength range of fat and protein were 1,600~1,800 nm, and normalization improved the prediction performance. The SNF and lactose were optimized at 1,600~1,900 nm, and the MUN at 600~800 nm. The best preprocessing method for SNF, lactose, and MUN turned out to be smoothing, MSC, and second derivative. The Correlation coefficients between the predicted and measured fat, protein, SNF, lactose, and MUN were 0.98, 0.90, 0.82, 0.75, and 0.61, respectively. The study results indicate that the models can be used to assess milk quality.

목차

등록된 정보가 없습니다.

참고문헌 (20)

참고문헌 신청

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2018-059-003065510