메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
배재권 (계명대학교) 이승연 (계명대학교) 서희진 (계명대학교)
저널정보
한국전자거래학회 한국전자거래학회지 한국전자거래학회지 제23권 제3호
발행연도
2018.8
수록면
207 - 224 (18page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
온라인 P2P 대출(Online Peer-to-Peer Lending)이란 대출자(차입자)들이 인터넷 및 모바일 P2P 플랫폼을 통해 대출을 신청하면 P2P 플랫폼 기업이 이를 심사하고, 공개하여 불특정 다수가 자금을 빌려주고 이자를 받는 대출중개 서비스를 말한다. 국내외적으로 P2P 대출시장의 성장과 수익률에 대한 관심이 커진 상황에서 현재는 P2P 대출에 대한 안정성 측면에서 문제가 제기되고 있다. P2P 대출시장은 높은 수익률을 제공하지만 P2P 업체의 연체율과 부실률(채무불이행률)도 함께 높아지고 있는 실정이다. P2P 금융시장의 신뢰도를 높이기 위해서는 P2P 대출의 연체율과 채무불이행률을 줄이는 것이 무엇보다 중요하다. 본 연구는 세계적인 P2P 기업인 렌딩클럽(Lending Club)의 P2P 대출거래데이터베이스를 이용하여 인공지능기반의 P2P 채무불이행 예측모형을 구축하고자 한다. 구체적으로 벤치마크(benchmark) 모형으로 통계기법인 판별분석과 로지스틱 회귀분석을 이용하고, 인공지능기법으로는 신경망, CART, 그리고 C5.0을 이용하여 P2P 대출거래의 채무불이행 예측모형을 구축하고자 한다. 연구결과, P2P 대출거래의 채무불이행 예측을 위해 우선 고려해야 할 변수는 대출이자율이며, 중요도 3순위에 가장 많이 언급된 대출금액과 총부채상환비율도 고려해야 할 요인으로 추출되었다. 전통적인 통계기법보다는 인공지능기법의 예측성과가 더 좋은 것으로 나타났으며, 신경망의 경우 모든 데이터 셋에서 오분류율이 가장 낮은 예측모형으로 나타났다.

목차

초록
ABSTRACT
1. 서론
2. 이론적 배경
3. 연구 방법
4. 연구모형 설계 및 연구 결과
5. 결론
References

참고문헌 (17)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0