메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술대회자료
저자정보
저널정보
한국사전학회 한국사전학회 학술대회 발표논문집 2018 한국사전학회 제33차 전국학술대회
발행연도
2018.8
수록면
113 - 139 (27page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
○ The purpose of this study is to discuss sentiment analysis of major characters in Shakespeare`s tragedy plays using dialogue corpora, comparing two types of word-lists for sentiment analysis: AFINN(Nielsen 2011) and VADER (Hutto and Gilbert 2014).
○ First, (i) we try to investigate important tone patterns, using line graphs as time visualization, which both polarity(positive/negative) and intensity (strength) of all characters` sentiment valence sum in each of his 10 tragedy plays may show in order to uncover different types of Shakespeare`s tragedy.
○ In order to do, this, this study focuses on the comparison of sentiment analysis of Shakespeare`s love tragedies (Othello, Anthony and Cleopatra, and Romeo and Juliet) and love comedies(A Midsummer Night`s Dream, The Two Gentlemen of Verona and As You Like it), which Archer, Culpeper and Rayson (2005) classified.
○ Second, (ii) we will discuss some features of sentiment changes between characters within an act and across acts in the four tragedies through the development dispersion of emotional relationship. We also use bar graphs as time visualization, which means that knowing who is speaking to whom allows the flow of positive and negative sentiment valence sum to be tracked.
○ Finally, (iii) this study also attempts to visualize network structures connecting major characters in Shakespeare`s connecting major characters in Shakespeare`s tragedy plays to easily figure out their detailed emotion relationship, representing relation visualization.

목차

Abstract
1. Introduction
2. VADER
3. Sentiment Analysis
4. Sentiment Networks
5. Conclusion

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2018-703-003410789