본문 바로가기
[학술저널]

  • 학술저널

박노경(조선대학교)

DOI : 10.38121/kpea.2018.09.34.3.17

UCI(KEPA) : I410-ECN-0101-2018-323-003590879

초록

본 논문에서는 K-Means 군집모형과 계층적 군집모형, 혼합모형으로, 아시아 38개 컨테이너항만들의 2006년부터 2015년까지의 자료와 선석길이, 수심, 총면적, 크레인 수를 투입물, 컨테이너화물처리량을 산출물로 하여 국내대표 컨테이너항만 들(부산, 인천, 광양항)이 클러스터링 해야만 하는 항만들을 적출해 내는 측정방법을 보여 주고 비교, 분석, 검증하였다. 실증분석의 주요한 결과는 다음과 같다. 첫째, 10년간의 자료를 이용한 분석에서 클러스터링 후의 효율성 증가폭이 큰 순서대로 살펴보면 평균연결법[average linkage(AL)]은 42.04% 상승, Mixed Ward는 35.01% 상승, 경험법칙[rule of thumb(RT)]&Elbow는 30.47% 상승, Ward는23.65% 상승, Mixed AL는 23.25% 상승의 순서였다. 둘째, RT와 Elbow모형에 의한 국내항만들의 클러스터링을 살펴보면 ➀부산항은 두바이, 홍콩, 광저우, 칭타오, 포트 클랑, 싱가포르, 림찬방 ➁인천항은 하이파, 포트슐탄 카부스, 담만, 크호르 파칸, 탄중프리옥, 탄중퍼락, 동경, 나고야, 오사카, 카라치, 오아심, 마닐라, 다바오, 콜롬보, 킬롱, 방콕, ➂광양항은 아카바, 크호르 파칸, 광정우, 닝보, 칭타오, 포트 클랑, 카오슝, 림찬방 항과 클러스터링 해야만 하는 것으로 나타났다. 셋째, 최적 군집 수를 살펴보면 AL(6개), Mixed Ward(5개), RT&ELBOW (4개), Ward(5개), Mixed AL(6개)가 최적 군집 수인 것으로 나타났다. 넷째, 전문가 그룹에 의해서 선호되는 항만들과 본 실증분석결과에 의해서 도출된 국내항만들의 클러스터링 되는 항만들과의 일치성 여부는 부산항은 80%, 인천항은 17%, 광양항은 50%수준에서 일치하는 것으로 검증되었다.
본 논문이 제안하고 있는 정책적인 측면의 의미는 첫째, 항만정책입안자, 항만운영관리자들이 본 연구에서 사용한 모형들을 항만의 클러스터링에 도입하여 벤치마킹항만들을 선정해야만 한다. 둘째, 실증분석의 결과로서 도출된, 국내항만들의 참조항만, 클러스터링항만들에 대하여, 그들 항만들의 항만개발, 운영방안 등에 대한 내용을 비교⋅분석하고 벤치마킹이 필요한 부분은 신속하게 도입하여 실시하는 것이 필요하다는 점이다.

The purpose of this paper is to measure the clustering change and analyze empirical results. Additionally, by using k-means, hierarchical, and mixed models on Asian container ports over the period 2006-2015, the study aims to form a cluster comprising Busan, Incheon, and Gwangyang ports. The models consider the number of cranes, depth, birth length, and total area as inputs and container twenty-foot equivalent units(TEU) as output. Following are the main empirical results. First, ranking order according to the increasing ratio during the 10 years analysis shows that the value for average linkage(AL), mixed ward, rule of thumb(RT)& elbow, ward, and mixed AL are 42.04% up, 35.01% up, 30.47%up, and 23.65% up, respectively. Second, according to the RT and elbow models, the three Korean ports can be clustered with Asian ports in the following manner: Busan Port(Hong Kong, Guangzhou, Qingdao, and Singapore), Incheon Port(Tokyo, Nagoya, Osaka, Manila, and Bangkok), and Gwangyang Port(Gungzhou, Ningbo, Qingdao, and Kasiung). Third, optimal clustering numbers are as follows: AL(6), Mixed Ward(5), RT&elbow(4), Ward(5), and Mixed AL(6). Fourth, empirical clustering results match with those of questionnaire-Busan Port(80%), Incheon Port(17%), and Gwangyang Port(50%). The policy implication is that related parties of Korean seaports should introduce port improvement plans like the benchmarking of clustered seaports.

목차

Abstract
Ⅰ. 서론
Ⅱ. 기존연구에 대한 검토 및 한계점
Ⅲ. K-Means 군집모형과 계층적 군집(교차효율성 메트릭스에 의한 평균연결법, Ward법)모형 및 혼합모형을 이용한 컨테이너항만의 클러스터링 측정에 대한 실증적 비교 및 검증
Ⅳ. 결론
참고문헌
국문요약

리뷰(0)

도움이 되었어요.0

도움이 안되었어요.0

첫 리뷰를 남겨주세요.
DBpia에서 서비스 중인 논문에 한하여 피인용 수가 반영됩니다.
인용된 논문이 DBpia에서 서비스 중이라면, 아래 [참고문헌 신청]을 통해서 등록해보세요.
Insert title here