메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술대회자료
저자정보
Betere Job Isaac (University of the Ryukyus Senbaru 1) Hiroshi Kinjo (University of the Ryukyus Senbaru 1) Kunihiko Nakazono (University of the Ryukyus Senbaru 1) Naoki Oshiro (University of the Ryukyus Senbaru 1)
저널정보
제어로봇시스템학회 제어로봇시스템학회 국제학술대회 논문집 ICCAS 2018
발행연도
2018.10
수록면
392 - 397 (6page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
In this paper, we present a study on activity functions for a multi-layered neural networks (MLNNs) and propose a suitable activity function for data enlargement (DE). We have carefully studied the training performance of Sigmoid, ReLu, Leaky-ReLu and L & exp. activity functions for three inputs to multiple output training patterns. Our MLNNs model has L hidden layers with two inputs to four or six outputs by backpropagation neural network training (BP). We focused on the multi teacher training signals to investigate and evaluate the training performance in MLNNs and select the best and good activity function for data enlargement and hence could be applicable for image and signal processing (synaptic divergence). We specifically used four activity functions from which we found out that L & exp. activity function can suite data enlargement neural network training (DENN) since it could give the highest percentage training abilities compared to the other activity functions of Sigmoid, ReLu and Leaky-ReLu during simulation and training of data in the network. And finally, we recommend L & exp. function to be good for MLNNs and may be applicable for signal processing of data and information enlargement because of its performance training characteristics with multiple training logic patterns hence convolution neural networks (CNN).

목차

Abstract
1. Introduction
2. Neural Network Model
3. Backpropagation (BP) for MLNN
4. Experiment Simulations
5. Discussion
6. Conclusion
References

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2018-003-003538507