메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
우민아 (부산대학교) 이승민 (부산대학교) 이경훈 (부산대학교) 송우진 (부산대학교) 김정 (부산대학교)
저널정보
한국소성·가공학회 소성·가공 소성가공 제27권 제6호(통권 제178호)
발행연도
2018.12
수록면
331 - 338 (8page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
Electrohydraulic forming (EHF) process is a high speed forming process that utilizes the electric energy discharge in fluid-filled chamber to deform a sheet material. This process is completed in a very short time of less than 1ms. Therefore, finite element analysis is essential to observe the deformation mechanism of the material in detail. In addition, to perform the numerical simulation of EHF, the material properties obtained from the high-speed status, not quasi static conditions, should be applied. In this study, to obtain the parameters in the constitutive equation of Al 6061-T6 at high strain rate condition, a surrogate model using an artificial neural network (ANN) technique was employed. Using the results of the numerical simulation with free-bulging die in LS-DYNA, the surrogate model was constructed by ANN technique. By comparing the z-displacement with respect to the x-axis position in the experiment with the z-displacement in the ANN model, the parameters for the smallest error are obtained. Finally, the acquired parameters were validated by comparing the results of the finite element analysis, the ANN model and the experiment.

목차

Abstract
1. 서론
2. 자유 벌징 금형을 이용한액중 방전 성형 실험
3. 액중 방전 성형의 유한 요소 해석
4. 인공신경망을 이용한 대체 모델 구성
4. 결론
REFERENCES

참고문헌 (11)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0