본문 바로가기
  • 학술저널

표지

DBpia에서 서비스 중인 논문에 한하여 피인용 수가 반영됩니다. 내서재에 논문을 담은 이용자 수의 총합입니다.

초록·키워드 목차

Finite element simulation is a widely applied method for practical purpose in various metal forming process. However, in the simulation of elasto-plastic behavior of porous material or in crystal plasticity coupled multi-scale simulation, it requires much calculation time, which is a limitation in its application in practical situations. A machine learning model that directly outputs the constitutive equation without iterative calculations would greatly reduce the calculation time of the simulation. In this study, we examined the possibility of artificial intelligence based constitutive equation with the input of existing state variables and current velocity filed. To introduce the methodology, we described the process of obtaining the training data, machine learning process and the coupling of machine learning model with commercial software DEFROM<SUP>TM</SUP> , as a preliminary study, via rigid plastic finite element simulation. #Finite Element Method #Artificial Intelligence #Deep Learning #Constitutive Equation

Abstract
1. 서론
2. 관련 이론
3. 인공지능 구성방정식 모델
4. 결론
REFERENCES

저자의 논문

DBpia에서 서비스 중인 논문에 한하여 피인용 수가 반영됩니다.
Insert title here
논문의 정보가 복사되었습니다.
붙여넣기 하세요.