메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
홍석준 (Chungbuk National University) 이연규 (Chungbuk National University) 최종원 (Chungbuk National University) 조제일 (Dept. Agency for Defense Development) 서보석 (Chungbuk National University)
저널정보
한국전기전자학회 전기전자학회논문지 전기전자학회논문지 제22권 제1호
발행연도
2018.3
수록면
162 - 167 (6page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
이 논문에서는 수신된 레이더 신호로부터 추출한 파라미터 데이터에 기계학습을 적용하여 그 레이더에 대응하기 위한 재밍기법에 따라 레이더 신호를 분류하는 방법을 제안한다. 현재 군에서는 대부분 사전 조사에 의해 구축된 레이더 신호 파라미터에 대한 라이브러리를 기반으로 위협 형태에 따라 레이더 신호를 분류한다. 그러나 레이더 기술은 계속적으로 발전되고 다양해지고 있기 때문에 새로운 위협이나 기존의 라이브러리에 존재하지 않는 위협형태에 대해서 이 방법을 적용하는 경우 적절하게 신호를 분류할 수 없고 따라서 적합한 재밍기법을 선택하는데 제한이 따른다. 따라서 기존의 위협 라이브러리를 이용한 방식과 다르게 추정한 레이더 신호의 파라미터 데이터만을 이용하여 최적의 재밍기법을 선택할 수 있도록 신호를 분류하는 기술이 필요하다. 이 연구에서는 새로운 위협 신호의 형태에 대응하기 위한 방법으로 기계학습을 기반으로 한 방법을 제시한다. 제안한 방법은 기존에 축적된 라이브러리 데이터를 이용하여 은닉 마르코프(Markov) 모델과 신경망으로 구성된 분류기를 학습시킴으로써 새로운 위협 신호에 대해 적절한 재밍기법을 대응시킬 수 있도록 신호를 분류한다.

목차

Abstract
요약
Ⅰ. 서론
Ⅱ. 레이더 신호 분류 방법
Ⅲ. 제안한 기계학습 기반 레이더 신호 분류 방법
Ⅳ. 모의실험 결과
Ⅴ. 결론
References

참고문헌 (6)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2019-056-000174104