메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
신장희 (경성대학교)
저널정보
한국의상디자인학회 한국의상디자인학회지 한국의상디자인학회지 제20권 제4호
발행연도
2018.12
수록면
95 - 104 (10page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
This study classified the figurative features of the raglan sleeves presented in the Spring and Summer Collections and Fall and Winter Collections abroad in 2010 and 2018 and analyzed the production methods and patterns of the classified raglan sleeves. The analysis results are described below. The raglan sleeves in the latest fashion trends were classified into Type H, Type A, Type O and Type Y per shape. The production features of raglan sleeves in the latest fashion trends included the cutting lines in various shapes, a flounce that made shoulders look wider, and decorations such as gathers, studs, punching, slits, pleats and tucks. The raglan sleeve design was classified into Yoke Raglan, Armhole Princess Raglan, Semi Raglan, Gathered Raglan, Pleats Raglan, Cowl Raglan, Origami Raglan, Circular Curved Raglan, Capes Raglan and Constructive Design Raglan and the patterns per design were presented. For creative and experimental clothing by the analysis of the features of raglan sleeve structure, a variety of configuration methods need to be developed and implemented. The analysis results of this study will contribute to the development of the fashion industry through small quantity batch production pursuing unique styles as the basis for further study on the configuration methods of raglan sleeves. This study will be used in various ways as education materials on sleeve patterns in the educational field. Through the analysis of sleeve patterns, this study tries to provide basic data for planning the design of raglan sleeves and helping to diversify the ladies’ apparel market in the future.

목차

Abstract
Ⅰ. 서론
Ⅱ. 연구방법
Ⅲ. 결과 및 분석
Ⅳ. 결론 및 제언
참고문헌

참고문헌 (16)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2019-592-000318976