메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
임헌영 (세종대학교) 이유림 (세종대학교) 지민규 (세종대학교) 고명현 (세종대학교) 김학동 (세종대학교) 김원일 (세종대학교)
저널정보
한국방송·미디어공학회 방송공학회논문지 방송공학회논문지 제24권 제1호
발행연도
2019.1
수록면
67 - 76 (10page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
본 연구에서는 다중 라벨링이 되어 있는 이미지 데이터를 대상으로 시멘틱 세그멘테이션을 활용한 효율적인 오브젝트별 영역 분류기법을 연구한다. 이미지 데이터에 포함된 색상 정보, 윤곽선, 명암, 채도 등 다양한 픽셀 단위 정보와 프로세싱 기법뿐만 아니라 각 오브젝트들이 위치한 세부 영역을 의미 있는 단위로 추출하여 추론 결과에 반영하는 실험을 진행하고 그 결과에 대해 논의한다. 이미지 분류에서 훌륭한 성능을 검증받은 뉴럴 네트워크를 활용하여 비정형성이 심하고 다양한 클래스 오브젝트가 포함된 이미지 데이터를 대상으로 어떤 오브젝트가 어디에 위치하였는지 파악하는 작업을 진행한다. 이러한 연구를 기반으로 향후 다양한 오브젝트가 포함된 복잡한 이미지의 실시간 세부 영역 분류를 진행하는 인공지능 서비스 제공을 목표로 한다.

목차

요약
Abstract
Ⅰ. 서론
Ⅱ. Semantic Segmentation
Ⅲ. 제안 방법
Ⅳ. 실험 결과 및 논의
Ⅴ. 결론
참고문헌 (References)

참고문헌 (14)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2019-567-000432912