메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
강호영 손근수 (한화시스템) 손민우 (한양대학교) 송유석 (성균관대학교)
저널정보
한국정보보호학회 정보보호학회지 정보보호학회지 제29권 제1호
발행연도
2019.2
수록면
26 - 33 (8page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
안드로이드 모바일 환경에서 사용되는 애플리케이션은 사용자에게 여러 권한을 요구하며, 특정한 기능을 수행한다. 공격자는 정상적인 애플리케이션으로 가장한 악성 애플리케이션을 사용자가 다운로드 하도록 유도하여 금융정보 및 개인정보를 탈취할 수 있다. 기존의 모바일 백신은 시그니처(signature) 기반의 악성 애플리케이션 탐지 방법을 사용하기 때문에 정상 애플리케이션으로 가장한 악성 애플리케이션의 탐지가 어려운 측면이 있다. 따라서, 본 논문에서는 안드로이드 악성애플리케이션 탐지율 향상을 위한 특성(feature)을 연구 및 분석하고, 여러 기계학습 모델을 적용하여 최종적으로는 기존의 모바일 백신으로는 탐지가 어려운 악성 애플리케이션까지 탐지가 가능한 기계학습 모델을 제안하였다.

목차

요약
Ⅰ. 서론
Ⅱ. 악성 앱 특성 분석
Ⅲ. 기계학습 모델 적용
Ⅳ. 악성 앱 탐지 모델
Ⅴ. 결론
참고문헌

참고문헌 (0)

참고문헌 신청

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2019-004-000474414