메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
이웅섭 (경상대학교) 김성환 (국립경상대학교) 류종열 (국립경상대학교) 반태원 (경상대학교)
저널정보
한국정보통신학회 한국정보통신학회논문지 한국정보통신학회논문지 제23권 제3호
발행연도
2019.3
수록면
326 - 332 (7page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
최근 딥러닝 기술이 큰 관심을 받으며 다양한 분야에 적용되고 있다. 특히 다양한 무선통신기술에 딥러닝을 접목하여 기존 통신시스템의 한계를 뛰어넘으려는 시도가 이루어지고 있다. 본 논문에서는 딥러닝 기반 무선통신 시스템 송신전력 조절방안의 성능검증을 수행하였다. 딥러닝 기반 송신전력 조절방안에서는 수학적 최적화 문제를 직접 풀어서 최적의 전력을 결정하는 기존 방식과 달리 심층신경망 구조를 학습시켜서 채널에 따라 최적의 송신전력을 찾는 General solver를 도출하여 이를 이용한다. 특히 시스템의 주파수 효율을 심층신경망 학습의 손실함수로 사용함으로써 라벨없이 학습을 가능케 한다. 본 논문에서는 Tensorflow 기반 성능분석을 통해 딥러닝 기반 송신전력 조절방안과 최적방안의 성능이 일치함을 보였고, 또한 제안 방안이 기존의 방식에 비해서 1/200의 계산복잡도로 송신전력을 찾을 수 있음을 보임으로써 실제 무선통신시스템에서의 적용가능성을 검증하였다.

목차

요약
ABSTRACT
Ⅰ. 서론
Ⅱ. 시스템 모델 및 딥러닝 기반 송신전력 조절방안
Ⅲ. 결과분석
Ⅳ. 결론
REFERENCES

참고문헌 (10)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2019-004-000567618