메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
이의훈 (충북대학교) 이호민 (고려대학교) 최영환 (고려대학교) 김중훈 (고려대학교)
저널정보
한국산학기술학회 한국산학기술학회 논문지 한국산학기술학회논문지 제20권 제6호
발행연도
2019.6
수록면
314 - 321 (8page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
본 연구에서 개발된 Self-Adaptive Vision Correction Algorithm (SAVCA)은 광학적 특성을 모방하여 개발된 Vision Correction Algorithm (VCA)의 총 6개의 매개변수 중 자가 적응형태로 구축된 Division Rate 1 (DR1) 및 Division Rate 2 (DR2)를 제외한 Modulation Transfer Function Rate (MR), Astigmatic Rate (AR), Astigmatic Factor (AF) 및 Compression Factor (CF) 등 4개의 매개변수를 변경하여 사용성을 증대시키기 위해 제시되었다. 개발된 SAVCA의 검증을 위해 기존 VCA를 적용하였던 2개 변수를 갖는 수학 문제 (Six hump camel back 및 Easton and fenton) 및 30개 변수를 갖는 수학 문제 (Schwefel 및 Hyper sphere)에 적용한 결과 SAVCA는 비교한 다른 알고리즘 (Harmony Search, Water Cycle Algorithm, VCA, Genetic Algorithms with Floating-point representation, Shuffled Complex Evolution algorithm 및 Modified Shuffled Complex Evolution)에 비해 우수한 성능을 보여주었다. 마지막으로 공학 문제인 Speed reducer design에서도 SAVCA는 가장 좋은 결과를 보여주었다. 복잡한 매개변수 조절과정을 거치지 않은 SAVCA는 여러 분야에서 적용이 가능할 것이다.

목차

요약
Abstract
1. 서론
2. VCA
3. SAVCA
4. 적용결과
5. 결론
References

참고문헌 (12)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2019-505-000923912