메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
김정환 (Hanyang University) 임준홍 (Hanyang University)
저널정보
한국전기전자학회 전기전자학회논문지 전기전자학회논문지 제23권 제2호
발행연도
2019.6
수록면
642 - 651 (10page)

이용수

DBpia Top 10%동일한 주제분류 기준으로
최근 2년간 이용수 순으로 정렬했을 때
해당 논문이 위치하는 상위 비율을 의미합니다.
표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
최근 지능형 교통관제 시스템에 관한 다양한 연구가 진행되고 있는 가운데 번호판 검출과 인식 알고리즘은 가장 중요한 요소 중에 하나로 대두되고 있다. 번호판은 차량의 고유 식별값을 가지고 있기 때문이다. 기존의 차량 통행 관제 시스템은 정차를 기반으로 하고 있으며 차량의 입출입 인식 방법으로 루프 코일을 사용하고 있다. 이러한 방법은 교통 정체를 유발하고 유지보수 비용이 상승하는 단점을 가지고 있다. 본 논문에서는 이러한 문제점을 해결하기 위해서 차량의 입출입 인식 방법으로 카메라 영상을 사용한다. 차량 통행 관제 시스템의 특성상 카메라가 고정되어 있다. 이에 차량이 접근하면 카메라의 배경화면이 달라진다. 이 특징을 이용하여 배경화면의 차분영상을 구하면 차량의 입출입을 인식할 수 있다. 입출입 인식 후 한국 번호판의 형태학적 특성을 이용하여 후보 이미지를 추정한다. 그리고 선형 SVM(Support Vector Machine)을 이용해서 최종 번호판을 검출한다. 검출한 번호판의 글자와 숫자 인식 방법으로는 CNN(Convolutional Neural Network) 알고리즘을 사용한다. 제안한 알고리즘은 기존의 시스템과 달리 검출 위치를 기준으로 글자와 숫자를 인식하기 때문에 번호판의 규격이 변해도 인식할 수 있다. 실험한 결과 기존의 번호판 인식 알고리즘들 보다 제안한 알고리즘이 더 높은 인식률을 가진다.

목차

Abstract
요약
Ⅰ. 서론
Ⅱ. 차량 인식
Ⅲ. 차량 번호판 검출
Ⅳ. 숫자 및 문자 인식7
Ⅴ. 실험 결과
Ⅵ. 결론
References

참고문헌 (11)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0