메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
Jean-Bastien Carrat (Univ. Grenoble Alpes) Regiane Fortes-Patella (Univ. Grenoble Alpes) Jean-Pierre Franc (Univ. Grenoble Alpes)
저널정보
한국유체기계학회 International Journal of Fluid Machinery and Systems International Journal of Fluid Machinery and Systems Vol.12 No.2
발행연도
2019.6
수록면
136 - 146 (11page)
DOI
10.5293/IJFMS.2019.12.2.136

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
This paper presents a joint experimental and numerical analysis of the erosive potential of an unsteady cavity that develops at the leading edge of a two-dimensional hydrofoil and periodically sheds vapour clouds. From an experimental viewpoint, the erosive potential was characterized by pressure pulse height spectra. The hydrofoil was equipped with eight pressure sensors made of PVDF piezoelectric film that allowed the measurement of flow aggressiveness at different locations along the hydrofoil chord. It was shown that the mean peak rate over a large number of cavity pulsations exhibits a maximum at a distance from the leading edge close to the maximum cavity length. Moreover, the increase in flow aggressiveness caused by an increase in flow velocity can be explained by an increase in both amplitude and frequency of impact loads. From a numerical viewpoint, the unsteady Reynolds averaged Navier-Stokes (RANS) equations were solved using a modified k-ε RNG turbulence model together with a homogeneous cavitation model within a two-dimensional approach. Flow aggressiveness was estimated from the Lagrangian derivative of the computed void fraction that allows identifying the regions of collapse of vapour structures. Three different critical regions from an erosive viewpoint were numerically identified. Apart from the region of collapse of the shed cloud (which was not instrumented in the present study), the computations showed a maximum of aggressiveness around the maximum cavity length as found experimentally. Another region of high aggressiveness closer to the leading edge and associated to the upward movement of the re-entrant jet was predicted by the present numerical model but not confirmed experimentally, which probably shows the limitation of a two-dimensional approach.

목차

Abstract
1. Introduction
2. Hydrofoil geometry and experimental set-up
3. Experimental results and analyses
4. CFD simulations
5. Flow aggressiveness
6. Comparison between experimental and numerical results
7. Conclusion
References

참고문헌 (28)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2019-554-000987968