메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학술저널
저자정보
저널정보
한국지식경영학회 지식경영연구 지식경영연구 제19권 제2호
발행연도
2018.1
수록면
91 - 108 (18page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색

이 논문의 연구 히스토리 (2)

초록· 키워드

오류제보하기
This study mainly focused on measuring the impact of comments for a particular song on the number of streamings and downloads. We modeled multiple regression equations to perform this analysis. We chose digital music market for the object of analysis because of its inherent characteristics, such as experience goods, high bandwagon effect, and so on. We carefully utilized text mining technique in accordance with the algorithm of Naïve Bayes classifier to distinguish whether a comment for a piece of music be regarded as positive or negative. In addition, we used ‘size of agency’ and ‘existence of hit song’ as moderating variables. The reason for usage of those variables is that those are assumed to affect users’ decision for selecting particular song especially when downloading or streaming via music sites. We found empirical evidences that positive comments for a particular song increase the number of both downloads and streamings. However, positive comments may decrease the number of downloads when the size of agency of the artist is big. As a result, we were able to say that a positive comment for a particular song functioned as ‘word-of-mouth’ effect, inducing other users’ behavioral response. We also found that other features of an artist such as size of the agency that the artist belongs to functioned as an external factor along with feature of the song itself.

목차

등록된 정보가 없습니다.

참고문헌 (34)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0